

8 . _(69 er. (56_e e e), ____S e e e e e) e e e e e -. 1995). ę e _(. e e e, e_e e 8 e e e e__ 1 e e Se S e, _(e.,§., _ee e . 1996, 1998, 2000; se e e . 2001). le e e <u>_</u>e <u>e</u> e ellee ee _ ,5 g ,5 g ,5 e er, e 1 e e e 3 se s e **§** (1) e__ e e e e (.e. e e e e e e) e (2) e e e e e e e_ , e_e e e e e e, e e t , e eer e Li^{Se} **še_**, 1 e e e e e e e i Se le g 1 e . e _e __(e.,^g.,_ee c. 1992; C. 5 c. 1999). cc c_cc. , e _1e _8__ - e_ e . 2000), ____ __ _ e e . e____ _ , **5**

	T 4 42	1	ų	pካ 2. p										
5	1(-) T T	Г ()4 ()4 2(5)4	1()4 (() (~ 2-4(),)-	(-42	(I.	1	4	() T T

Sequence Analysis and Quality Control

el 🗲 👌 e 🔄 e e e e [e , **,**8 e e l e e _e_e_e_1 c c c 🕻 🔤 e .1994). lece e e e e ____e) (∫] e . € (, , e _ e , 1999) ! s e e r 1 e___ e e(e_e.1990; rle. ,**S** е. e r 9025, **C** *, , , ,* e_ ¢, √ 8 lee e 22906-9025) e e c c ce e_1____e C le €~50% e____le e 8 1 ,Se .__(e e e e e _ e e e e e e e В, e e ¢ e 97% e e e e e 1 8 _ e e e ee 5 c le e e 3% e e e se e e e e c_iS e e <u>e</u> e e _cccc. e e 8 - _ _ e _ _ e _ _ e e e

. 13 . . le ee, eee e e e lee e e e See e _ 1 . . . e_e e e e . 2. 28 c c c e e e e **__,** e r. e e e ¦ ee e e e ee es e le1 e e

ç_, le e See e e_e e eleeer 5 ce e e e ee_er le e e e e e e e e e (.e.,] æ e e__ e) e e le elee e ee e e 1 e e e. 7 e s 1 8 e ee e e e _ _ , e ee. e el e e e e e e e e ___e e 3

Evolutionary Analysis of Sequences

P e s Se e e | -e , .e e e e r.(le ____e s e ý . . 2001). _e e e_, e . __(. ___ . ¦Se e_) e e_e e

Recombination/Linkage Disequilibrium (LD) Analysis

1

The mtDNA-Sequence Set and Haplogroup-Associated Polymprphisms

el en_ele ee <u>, E e e e e 560 e e e e</u> ee. ,5 e,5 ee e e e _577 16023 1 e e e Se e <u>s</u>ee_ [< e e 560 e e e e 1e 1 el e ee_e e e e e e e e r. e 1 c 1). lee e e (, e e e e e e <u>e</u> e <u>e</u> 327 536, le e ., le e___1 e e e) le se e le 1 **.**S S _____1 e & (ee -8435 e e e e e e e

5	e e l(_)	e, e, e, _e(_)							
	663	e . (1992)							
	9-1 cc , 16519C	e .(1992)							
C	13263	e . (1992)							
	C 2092 , C 5178 , C 8414	e (1992), e (1994)							
	7598	e . (1994 <i>b</i>)							
	7028 C , 14766 C	e (1994), e . (1999)							
1	3010	e . (2001)							
2	1438 , 4769	e . (2001)							
	1719, 8251, 10238 C	e . (1996), e . (1999)							
	4216 C , 12612 , 13708	e . (1994 <i>a</i>), e . (1999)							
1	3010	e . (2001)							
2	C7476 . 15257	e . (2001)							
*	1811 , 9055 , 12308 , 12372	e . (1996), e . (1999), e . (2001)							
	10873 C	- c. (1999)							
1	2758 . C3594 . 10810C	C c c . (1995)							
1	C 4312	e . (1999)							
1/	2352 C	e (1998)							
1	9072 12810	e (1998)							
2	C3594	$\mathbf{f} = \mathbf{c}$ (1995)							
2	13803	$\mathbf{d} = \mathbf{c}$ (2000)							
21	4158	C = (2000)							
3	3594 C	e e . (1999)							
31	8616 11002	- c (1999). C c c (2000)							
3	8618C	e . (1998)							
3e	2352 C	e (1998)							
-	C10400 10873C	$e_{(1993)}$ - $e_{(1999)}$							
	709 1888 4917 10463C 13368	e (1996), e (1999), e (2001)							
	14905 15607 15928								
1	C12633	e . (2001)							
2	11812 . 14233	c . (2001)							
_	12308 . 12372	e (1996), e (1999)							
2	1811 . 9055 . 12308 . 12372	e . (2001)							
4	1811 . 4646 C . C 11332	e . (1999), e . (2001)							
5	3197 C	e . (1999)							
5	7768	e (2001)							
5 1	14793	e . (2001)							
51	5656	c . (2001)							
6	7805 , 14179 C	- e e e . (2001)							
4	4580 . C15904	e (1996), e (1999)							
	709 . 1243 C . 8251 . 8994	e (1996), e (2001)							
	6221 C 1719 14470 C	e (1999), e (2001)							

,5e e,5e e e e e e e se e e - e e ___(e 1995). e e e e e e §_ e 10398, e (_ee) e e e e . 2001). e § e e e e e . . e 3e(_____e216,___ S e ...), de e ee e , S e e S le e , le elle e e e e e de, e e e sie e Se . e **g** § 200**1**). e se e " (**d**.S. ee e ee g ¹S cs e 5 e j.Se e e e e e e 1 e] el e e e e e e e e 560 e e e 636_e e e 8 c8 le e ____ se 139 e e e e e e e ele ed ee e e e s e e e e e_n, le e, le e_. . e e e e 497 e e e ,**5** , 323 se e S 174 e . e ₫___(1 ¢ 2). c d 497 ee e **.**

e I lee <u>e</u> g e e e e e e 1. **5** €_1 4. e e e e e e e e s e e e le e e ele S enle en e d_r e Se S e e .,] <u>e</u>, ee e e " e_e e e e e e e e e ||_e 4216 c c c (.c.) e , e 8 ے درم e e e__ e same ,5 e e

e 497 _ _, 235 e e e , **5** 1 4). e æ e e_e 235 elee e e e e e e e el ___e. ,**S**) e e 8 e e e e, e, e 103 e g e e _ e . . . _, le 750 , 1438 e ee e 8860 , 15326 _e e e_ 4769 , e ,S e . , e __, (__ee _ · , · e 2), e e le lee, e, e e e e e e e e e e el e C ec 3e e e (l.e., l.e. C ee) ee_; e c 1,438 e e

<u>e</u> e 1 . _____e___ e 15326 $1 \ _ l$ e_; 21 J (, 3, 1, 4).e e 🛛 _____ c___ e . e ee ee e e e e C e_, e _e 8 . le 2706 **C7**028 le e e_e le e 8 1 e 2), _e e e_(e . , e e /1, e e (<u>5</u> 3 _ee 4; 、 e e S. / . e). le **2**706] e e e, e e e e e_(§.4). je 1171 e_(1 e 2) e e e e e / 7e e ¢ €14766 e_, e, e e e _ e e e e e 10398 12705 e e r. e _1e

The African mtDNA Network

Т 12

Ū,	ph 77	τh	Ą	Ą	لم	لې	ψ I	Ŵ
				-				_

								3	Lc			1						
C	(25)	(18)	€ (13)	(9)	(3)	(226)	(14)	(33)	(47)	1 (13)	2 (23)	3 (20)	(1)	(46)	(42)	√ (8)	(8)	(11)
593				1				1	2									
709		2				3			9	7		1		46	1		8	
750	25	18	13	9	3	218	14	33	47	13	23	17	1	46	42	8	8	11
769										13	23							
930	1										1			16				
1018		10	12	ō			10	22		13	23	20		16	10	ō	0	
1438	25	18	13	9	3	208	12	33	47	6	23	20	1	46	42	8	8	11
1398	2					2	14	1						1				11
1/19						2 1	14	1	16					1	15			11
1011	2		6			1		1	46					16	15			
2158	2		0					2						-10	1			
22130						1		2	5						1			
2332						1			5		4	2						
2352										7	•	11						
2706	2.5	18	13	9	3	13	14	31	47	13	2.3	20	1	46	42	8	8	11
3010				9		73		27			1	1	-		3	÷	-	
3027					1	1												
3197															24			
3308										7	1							
3316	2					1					1			1			1	
3394					1	1		2										
3438						1					1	3						
3547		14				2												
3552			12						1									
3591	1					2												
3594										13	23							
3666				1		2				11	4							
3693					2					/	1				1			1
3703					2	1				2	1				1			1
3796		1				1				2								
3915		1				9						1						
3918		1									7	1		1	1			
4104		1								13	2.3			1	1			
4185						1				10	2			-				
4216						2		33			1			46				
4561						1			8						1			
4646						1									5			
4688												1		2				
4767						1					3							
4769	25	18	13	9	3	209	14	33	47	13	23	20	1	46	42	8	8	11
4793		. –				5								1				
4820		17													1			
4824	25						4			1				10				
491/						11	1							46			1	
5004						11				7		1					1	
5046						1				1		1		16			ð	
5221						1			5	2		3		16				
5251						1			5	2					2			
5426						1								7	7			
5442						1				2			1	/	/			
5460				1		2		2		2	1		1			1	8	
5581				1		-		-		-	3				1	1	0	
5656							1				5				4			
5913	1						-		4						•			
5999	-								-					1	5			
6023		3				2								1	1			
6150		-								2		1						
6152											2			1	7			
6221											1	11		1				11
6253						1				2								

(continued)

Τι2()

60 18219.2(68.8(-1525 0.831 650.54247424) 99 1.) -184.9(2)388.8(1)-(79 2 -1.1525 0.00)) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100))) (60 18219.2(68.8(-1525 0.831 650.542480-2) 0504 9 9(6)-8.30 (0.100)))

5 65 69 þ e.C . . 2 e e e e e , <u>s</u>_e10398, eee e B e e e 961 c c c c c c e__ , e. e <u>e e e</u> e , 1 , <u>1</u> e e <u>3</u> e (_ e 216 e 1. e e__ g e e___ 1e 5 e e e e e

3 e e 1 e 1 e (13650. 1/ 2-_e e _769, 1018, 3594, 4104, 7256, 7521, $e_{i} = e_{i}$ e_{i} e_{i er lee e e **g** e 15301 e e 3e_e_(e 1-1 ______,**5**____ _e , e e e e e), e e _Le e [♣_(, ♣. 1), e 10819 14212€

e 3e_1 e 8 8 ee 2, e e 8e e, ee • 104 _ e_e_(1 e 2). e e e_1e e e e e lee(e

1162

Am. J. Hum. Genet. 70:1152-1171, 2002

e 3e e e e e e-. 2001; _**eq** , **S**. 1). ere e e e e_e e e e e. e e e . 2001) e e e e e (e g e e l e **C**12705 e e 1 e 2). 3 e e e 3 €6371 ee C 6221€, e 8 e 13966 6221€ 13966 1447,0€. e e j8 e e e l e 2), e e . (e e Į, e e e e. e e e e e__is (**. 8**.4). e 2 e 8_e e r.e_r e _ee_ e e 1719, e e e e e 3251, e e See e e e e . 2001). e 11065 14766 e e e e e 3 e g e 1 e 11 e e e 1 e e 3447 6734 8616 2 15758 ۴ 1 e e e e 1438 e e ee e 336 1 e e ,S **c** 10398 1 e le e e e r.e_r. e e e e 15 24 e e e e " e e 1/2e e 505 (§. 4). e e e 3 , -__ e e e 1243**C**, 3,05 8994, €11674, , See e 11947 13884 , le, e e e (3 e e e 2001). e

5 e

Т і З

A, i Tr A, C -

	, •		, e	5
c	56	69	435	226
	418	293	906	413
1 e_e	143 (34%)	25 (10%)	15 (2%)	9 (2%)
<i>r</i> ² /e	8,911	210	105	36
r^2/\mathbb{C} , e e e	001 -	181*	.085 -	.103 -
δ/e	7,213	153	105	36
δ/ Ε ε	001 -	147*	002 -	.112 -
$\begin{array}{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \\ \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{r}^2 \mathbf{r} \\ 1 0 \\ 0 \\ 1 0 \\ 1 1 \mathbf{c} \mathbf{r}^2 \mathbf{\delta} \mathbf{c} \end{array}$	c c	ee	_c c c (.e., _c c, c	_1 c. cr c]c cc
ee ee ee ee e2001). ee e	01	e e.2 re e.	001)e.	(*),
	0. c 1 c	positive δ	r. C	

e (1, e, 2). e _____e e e e e e e , 1 e e , e e e, e er s s ce le-1 e ,S ce e e e e e e_1____ 5773 9545 11899C, L < . (. . . . 5 _____3, C, 1, . c c c _____1 c ____ c ____, c ___5 c ____ e e .___ ee ee ee e e

_______e_e_e_e_e lee eer e le ce e d . 2000; e . 2000), 1 . e 1 _e_ e_e__ lee e **.** _1 cel_e **.** æ e e e e _ e . 1000, _____ e e _ e e . _____ lee _ l_e _e . 1999). e e e e e e nuclear . 2000). el e e e (e e e , , e 1 e se se___ 1 e 8 e e 1.... 1 e e e e 1 e e ee 8 e Se e _ e e e ee -3 1 e e e e ₿∫ e e e æ e e ee e æ e e e e e e e_er_er_ e e e_e ,S . **_,** l e 5 c _ c c c _ ¢_ , c _ c e e____

<u>, k</u> 1 7

e _1 , e. e ιc e e. C, .r. 1 μ cc sc c 1 - c cc c c c c 9:2896 2908 c (1999) c c c c s e____se___e e **G** 186:49 e____ ιĘ 116 , 1 (1996) d e , (1996) E ee ee el e e 59 501 509 (1995) ., **C** ..., e e e e e. e e L 92:6892 6895 , e____, i__, e__e (2000) -, e____, e___e -3 e 408:708 713 e- 1 **,** . . e, [(1992) ee e_1 2 331 e e '_1 Se. . e 182:238 246 ₹ (**1**001) , 5, c_C,C1.c. , c,€c_c c ee, e ,Se e se e e e e € c c 2:13 (1999) :_____. - e e e e e e 64: 232 249 e , e , e (1994) e , & & e 36:747,751 L (2001) , e e e e e e ¢, e, " e e 52:160 170 e c, c, , c- c. (2001)) e c c c l c ce, , ____e r. 18: 2132 2135 c (1990) c c c c c L C c 183:63 98 (2001) <u>e</u> <u>se</u> e<u>s</u>e <u>e</u> <u>e</u> r.16:37 45 e Įξ , e -, , , - e e e e (1999) e e e e Homo sapiens sapiens le I e_ , , e ___, <u>_</u>e e , <u>e</u>, <u>e</u>, <u>e</u>, <u>.</u> e___ (1996) c ise e e e 59: e . 185 203

Am. J. Hum. Genet. 70:1152-1171, 2002 √ (2001) e ise e ee ____ , e e 68:1315, 1320 , e -, e_ € (1998) e_____8e e e 44.4(e e)-333.4(62:1)-311.2(2(.)-422..

____e.

-, $-$, $-$, $-$, $-$ (1997)	-
e e 61:691 704	
€ (2001) e	
e e159:749 756	
	A